1st SEM Paper-2

LESSON PLAN

No of Periods / Weeks

Elasticity
Rel beln eloytic corint, twistmy lerguc on "cylindeo.o wreve. Benoling of boams, External bonding mimoun, iflexulrdi rigidity sighe mel double contllever.
fluid motimn kinuematies of Moving, foutsts, Poisewill's agn through a cupidtang tube. surpuetersin, Gnavitatind wires ripple
Viscosity!' Porseculles Eqntor flow of liqued with cormetrms

PROGRESS

UNIT -2
CHIAPTER-3
ELASTICITY
Relation Between Plastic Constant:-
Relation $\operatorname{Bet}^{n} \quad Y, k \neq \sigma$:-
Let us rencider, a cube having length' 1 'for each side $p^{\text {uthichichlillel }}$ th the co-credinats $x, y ; z$.
. The subs is subjected to a uniform Normal p for each sidle of face.
The stress ' p ' acting parallel to X axis will produce extension parallel to the x-axis but compression parallel to y an z axis. Same for $y \neq z$ axis. z
The linear strain along x axis due to tensile stress along x axis is: But lateral strain P along x axis due to tensile stress along y a is $\frac{-\sigma p}{\gamma}$.
And the strain produce at X axis dueto stress aton z axis is $\frac{-\sigma P}{Y}$ imilarly considering other two pour of stress along y $\% z$ axis he resultant strain along x or y or z is

$$
\begin{align*}
& \qquad \begin{array}{l}
\frac{p}{y}-\frac{\sigma p}{y}-\frac{\sigma p}{y}=\frac{p}{y}(1-2 \sigma) \\
\text { volume strain }=\frac{3 p}{y}(1-2 \sigma) \\
\text { Bulk modulus }(k)=\frac{p}{\text { volume strain }} \Rightarrow k=\frac{p}{3 p}(1-2 \sigma) . \\
k=\frac{y}{3(1-2 \sigma)}
\end{array} \quad . \quad \text { (3) } \tag{1}
\end{align*}
$$

(consider a cube having external stress p $a^{1+N} x$-axis and comprescionou stress Patery ranis. But no stress alchey z-axis.
. The linear strain along x-axis due. to stress along x-axis is $\frac{p}{y}$
Ant Strain along X-axis due to compressional inc es alery y-axis is $\frac{\sigma P}{y}$

The resultant strain along x-axis is $\frac{P}{y}+\frac{\sigma P}{y}=\frac{P}{y}(1+\sigma)$ (1) similarly resultant strain along y and z axis are $\frac{L}{y}+\frac{\sigma P}{y}$ \& $\frac{-\sigma P}{y}+\frac{\sigma P}{y}=0$ respectively.
mublenesty extent. Both extensional o compressional strains are aunt angle to each other is equal to shear strain (θ)

$$
\begin{align*}
& \theta=\frac{p}{y}(1+\sigma)+\frac{p}{y}(1+\sigma) \\
& \frac{f}{\theta}=\frac{p}{\theta}=\frac{Y}{2(1+\sigma)} \\
& \left(B u t \frac{p}{\theta}=\eta\right) \\
& \eta=\frac{Y}{2(1+\sigma)} \tag{3}
\end{align*}
$$

. re se η is modulus of Rigidity
bet $^{n} Y, K$ and η :-

$$
\begin{align*}
\therefore \text { know } k & =\frac{y}{3(1-2 \sigma)} \\
& \Rightarrow 1-2 \sigma=\frac{y}{3 k} \tag{1}
\end{align*}
$$

4.. also we know $\eta=\frac{\gamma}{2+2 \sigma}$

$$
\begin{equation*}
\Rightarrow 2+2 \sigma=\frac{y}{\eta} \tag{2}
\end{equation*}
$$

oaring en (1) F (2) we get.

$$
\begin{align*}
& \Rightarrow 1-2 \sigma+2+2 \sigma=\frac{y}{3 k}+\frac{y}{\eta} \\
& \Rightarrow 3=y\left(\frac{1}{3 k}+\frac{1}{\eta}\right) \\
& \Rightarrow \frac{3}{y}=\frac{1}{3 k}+\frac{1}{\eta} \\
& \Rightarrow \frac{q}{y}=\frac{3}{\eta}+\frac{1}{k} \quad \text { (3). } \tag{3}
\end{align*}
$$

External Bending Moment:-

- In the figure $N N^{\prime}$ represent as natural axis the filament above Ni are elongated and areas tension while the filament below the axis ane comprised.
-Pa divides the beam in to two pant take the pariwhich at equilibrium.
The fifrenent of endive the natural axis produce external force in-urert on filament while the filament below the axis produce
 comptiessienctl terce out-wand
The in wordy outward fore constitute a couple called nesteringh which out anti clockwise
- in portion panic POCQ is in el^{m} state y the restoring force acts in rleckwire.
- Te tinging mement of restoring fore we consieten a small portion of bent beam of angle d at center of curvature O, having radius R.
censizien a filament $a^{\prime} b^{\prime}$ at a distance z from $N N^{\prime}$.

$$
\begin{aligned}
& a^{\prime} b=(R+2) \phi \\
& a b=R \phi
\end{aligned}
$$

change in length is

$$
\begin{equation*}
\Rightarrow a^{\prime} b^{\prime}-a b=(R+2) \phi-R \phi=2 \phi \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { strain produce is } \frac{\text { sparge in length }}{\text { initial length }}=\frac{z \phi}{R \phi}=\frac{z}{R} \tag{2}
\end{equation*}
$$

let f be the force acting on cross-section x ba be its area of cross-section then

$$
\text { young modulus } \begin{align*}
& y=\frac{\text { tensile stress }}{\text { tensile strain }}=\frac{F / 6 a}{z / R} \\
& \Rightarrow \frac{f}{\delta a}=\frac{y z}{R} \\
& f=\frac{y(\delta a) z}{R} \tag{3}
\end{align*}
$$

moment of this fere along natural axis is

$$
\begin{align*}
f_{z} & =\frac{y(\sigma a) z}{R} \cdot z \\
& =\frac{y z^{2}(\sigma a)}{R} \tag{4}
\end{align*}
$$

sum of all moment of fere alting on crossection is

$$
\sum f z=\sum \frac{y z^{2}\left(\sigma_{0}\right)}{R}=\frac{Y}{R}(6 a) z^{2}-5
$$

$\Sigma(\delta a) z^{2}$ is kreun of geometrical moment of inertia (I_{g})

$$
\text { Bereling moment }=\frac{y I_{9}}{R} \text { (7) }
$$

isxural Rigility :
the quantity $Y I_{3}$ is known as fleruatul Rigielity.
is defined as "the bending memert requered to proder cort

(1). (1) us consider a thin contilever A if length L which is fixed at one end A s B is teaded with weight w as , bion in figure.
we to leait B goes dewnward and peem the dotted line.
urioter a section $C B$ at x distanes frim A. w produce a load oncBat alitkwise. The magnt of tortque is $\omega(t-k)$.

feace due elastility inselte the heurn. thex on $C P$ is gitsen by
The terque on section $C B$ due to elastrity of beam is $\frac{Y \mathrm{If}}{R}$ The two fortes muct belance each other

$$
\omega(L-x)=\frac{Y I_{g}}{R}
$$

Aicorigin q the co-ordinates of c is (x, y) then radius of curvation is

$$
\frac{1}{R}=\frac{d^{2} y / d x^{2}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}
$$

But $\frac{d y}{d x} \ll\left(\frac{d y}{d x}\right)^{2}$ so eqn (2) become $\frac{1}{R}=\frac{d^{2} y}{d x^{2}}$
$\therefore \quad 4^{n}(1)$ become $\omega(L-x)=Y \operatorname{Ig} \frac{d R_{y}}{d x^{2}}$

$$
\begin{equation*}
\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{w}{x I_{g}}(t-x) \tag{4}
\end{equation*}
$$

by integrationg both side we get

$$
\begin{array}{r}
\frac{d y}{d x}=\frac{W}{y I_{g}}\left[l x-\frac{x^{2}}{2}\right]+c_{1} \tag{5}\\
\left(c_{1}=\text { censtant }\right)
\end{array}
$$

At A the beam is norizontal ie $x=0 \frac{d y}{d x}=0$ eq. 5 beeme we have $c_{1}=0$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{w}{y I_{g}}\left(l x-\frac{x^{2}}{2}\right) \tag{6}
\end{equation*}
$$

Agruen Integral eqn (6) we get

$$
y=\frac{w}{Y I_{z}}\left[1 \frac{x^{2}}{2}-\frac{x^{3}}{6}\right]+c_{2}-\quad(A) \quad\left(c_{2} \text { :const }\right)
$$

$\therefore C_{2}=c$
Then eq h (7) become $y=\frac{W}{y I_{g}}\left[L \frac{x^{2}}{2}-\frac{x^{2}}{6}\right]$ \qquad
eq h (q) is the expression for depression of beam ot x from 4 .
Put depression at B is obtained by using $x=L$

$$
\begin{aligned}
& y=\frac{w}{y I_{z}}\left[L \frac{L^{2}}{2}-\frac{L^{3}}{6}\right] \\
& y=\frac{\omega}{y I_{g}}\left[\frac{2 L^{3}}{6}\right] \\
& y=\frac{\omega L^{3}}{3 Y I_{z}}
\end{aligned}
$$

(9) (Required eq>).
fer rectangle section $I_{g}=\frac{b d^{3}}{12}$

$$
y=\frac{w l^{3}}{3 Y \frac{b d^{3}}{12}}=\frac{4 w l^{9}}{7 b d^{3}}
$$

fore beam of circular crosection $I_{g}=\frac{\pi r^{4}}{4}$

$$
y=\frac{w l^{3}}{3 y \frac{\pi \pi^{4}}{4}}=\frac{4 \omega l^{3}}{3 y \pi \pi^{4}}
$$

(2) Heavy Cantilever:-

- Consider a contilever $A B$ Fixed at end $A \mathscr{F}$ B end is loaded with weight W.
- Let w be the beam pen unit length. - consular a section $C B$ x distance and from A $\& L$ is length of bears.
- CB has length $(L-x) \&$ weight $w(L-x)$ is action on mid of $C B$ at $\left(\frac{(l-x}{2}\right)$ distance from.
- So bering of beamat c solve te ω is $w(l-x)$
 and due to w as weigh of $C R$ is given by

$$
\begin{aligned}
& w(L-x) \frac{(L-x)}{2} \\
& =\frac{\omega(L-x)^{2}}{2}
\end{aligned}
$$

Total momentum due to external force

$$
=\omega(l-x)+\frac{\omega}{2}(1-x)^{2}
$$

fort eft of beam the external couple m is balaceil by bending moment

$$
\begin{equation*}
\frac{y I_{g}}{p} w(l-x)+\frac{w}{2}(l-x)^{2} \tag{0}
\end{equation*}
$$

\qquad
But $\frac{1}{p}=\frac{d^{2} y}{\frac{d x}{x}}\left(\cdots \frac{d y}{q x}<1\right.$ fer smell bending)

$$
\begin{align*}
y I_{y} \frac{d^{2} y}{d x^{2}} & =w(l-x)+\frac{w}{2}(L-x)^{2} \\
& =w(1-x)+\frac{w}{2}\left[l^{2}+x^{2}-2 L x\right] \tag{2}
\end{align*}
$$

nilitim en (2) we -get win t x weget

$$
\begin{align*}
y \lg \frac{d y}{\partial x} & =w\left(1 x \cdot \frac{x^{2}}{2}\right)+\frac{w}{2}\left[l^{2} x-21 \frac{x^{2}}{2}+\frac{x^{3}}{3}\right]+c_{1} \\
& =\omega\left(1 x-\frac{x^{2}}{2}\right)+\frac{w}{2}\left[t^{2} x-1 x^{2}+\frac{x^{3}}{3}\right]+c_{1} \tag{3}
\end{align*}
$$

$x=c \cdot \frac{d y}{d x}=0$
\therefore : 0 we get it from eqn 3) \& Integration eqn (?) weget
$y \exists_{y} \frac{d y}{\square x}=\omega\left(t x-\frac{x^{2}}{2} \quad y I_{y} y=\omega\left[1 \frac{x^{2}}{2}-\frac{x^{3}}{6}\right]+\frac{w}{2}\left[1^{2} \frac{x^{2}}{2}-1 \frac{x^{3}}{3}+\frac{x^{4}}{12}\right]+c_{2}\right.$
crit But $x=C \quad y=c \quad \therefore c_{2}=6$
$y_{1} y=\omega\left[\frac{1 x^{2}}{2}-\frac{x^{3}}{6}\right]+\frac{w^{2}}{2}\left[\frac{1^{2} x^{2}}{2}-\frac{1 x^{3}}{3}+\frac{x^{4}}{12}\right]$

$$
: 1 w / x
$$

The depression at B is obtained by putting $x=y /$
$y_{g} y=\omega\left[\frac{t^{2}}{2}-\frac{t^{3}}{6}\right]+\frac{\omega}{2}\left[\frac{t^{2} t^{2}}{2}-\frac{L^{3}}{3}+\frac{t^{4}}{12}\right]-(5)$
$y I_{g} y=\frac{\omega t^{3}}{3}+\frac{\omega L}{2} \cdot \frac{t^{3}}{4}=\frac{w t^{3}}{3}+\frac{w, t^{3}}{8}$
$\Rightarrow y=\frac{l^{3}}{3 Y I_{g}}\left(\omega+\frac{3}{8} w_{1}\right) \underset{\rightarrow}{\text { (required eq). }}$ (wi weight of beam)
apart eq $y=\frac{\omega L^{3}}{3 y I_{g}}$ it is clean that w at free end increase $\frac{3}{8}$ efit: n weight.
2) inntilever loaded Uniformly:-
. Lit's consider a cantilever $A B$ of length
Axed at end 4 , while the other end B

free.

Let ω be the load per unit length of the rurtlever then we consider section CB with bends due to load $\omega(l-x)$ at d-tance $\frac{(l-x)}{2}$.

Then Vending moment : $\omega(1-x) \frac{(1-x)}{2}=\frac{\omega(1-x)^{2}}{2}$
ie $\frac{Y I_{q}}{R}=\frac{w(1-x)^{2}}{2}$
Put $\frac{1}{R}=\frac{d^{2} y}{d x^{2}}$ fort small amount of bending eq n (1) become $\quad y 1_{y} \frac{a^{2} y}{d x^{2}}=\frac{\omega\left(\frac{(-x)^{2}}{2}\right.}{2}$

$$
\Rightarrow \frac{d^{2} y}{d x^{2}} \cdot \frac{\omega}{2 y I_{g}}(t-x)^{2}
$$

by integrate eqn (2) we get.
$\Rightarrow \frac{d y}{d x} \frac{\omega}{2 y I_{y}}\left(L^{2} x+\frac{x^{3}}{3}-\frac{2 l x^{2}}{2}\right)+c_{1} \quad\left(c_{1}=\right.$ con 4$)$.
using indiction $x=0, \frac{d y}{d x}=0 \quad c_{1}=0$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{w}{2 y I_{g}}\left[l^{2} x+\frac{x^{3}}{3}-l x^{2}\right] \tag{3}
\end{equation*}
$$

Integrating wis w ret x beget

$$
\begin{align*}
y & =\frac{\omega}{\partial y I_{g}}\left[l^{2} \frac{x^{2}}{2}+\frac{x^{4}}{12}-\frac{l x^{2}}{3}\right]+c_{2} \\
\text { at } x & =0 \quad y=0 \\
c_{2} & =0 \\
\therefore \quad y & =\frac{\omega}{2 y I_{g}}\left[\frac{L^{2} x^{2}}{2}+\frac{x^{4}}{12}-\frac{L x^{3}}{3}\right]-(4) \tag{4}
\end{align*}
$$

Se the depression at end B is obtained by taking $x=L$

$$
\begin{aligned}
\Rightarrow y & =\frac{\omega}{2 Y I_{g}}\left[\frac{L^{2} L^{2}}{2}+\frac{L^{4}}{12}-\frac{L L^{3}}{3}\right] \\
& =\frac{\omega}{2 Y I_{g}}\left[\frac{L^{4}}{2}+\frac{L^{4}}{12}-\frac{L^{4}}{3}\right] \\
\Rightarrow Y & =\frac{\omega L}{2 Y I_{g}}\left(\frac{L^{3}}{4}\right) \\
\Rightarrow y & \left.=\frac{\omega L^{4}}{8 Y I_{g}} \quad \begin{array}{l}
\text { Where } \omega=\omega L \\
\text { the total Loot } \\
\text { on beam. }
\end{array}\right)
\end{aligned}
$$

(4) Beam Supported at both end
$\$$ leaded at centre: -

- Let ul consider a beam 'AB' of length ' L ' supported on tow knife edges at both end $\$$ a weight ' ω ' is at it's centre. The upward rexn at each knife edge is $\frac{\omega}{2}$ as shown.

-The middle part of the beam such as at point C, it is herizental se the beam is asumed to be macle up of two cantilever $A C \& B C$ of length $4 / 2$ fixed at c bending under load $\mathrm{w} / 2$.
so depression at C is

$$
\begin{aligned}
& y_{m}=\frac{\left(\frac{\omega}{2}\right)\left(\frac{1}{2}\right)^{3}}{3 y I_{g}}=\frac{\omega L^{3}}{3 E Y I_{g}} \\
& y_{n}=\frac{w z^{3}}{3 B y g}
\end{aligned}
$$

Let us consifier a section $Q B$ at distance x from from C as Shown.

In , hing motnerit the tr \mid |owl $\frac{6}{2}$
$\frac{4}{3}\left(\frac{1-x}{a}\right)$
fri foilini+.m henling moment $Y I_{g} / R$.

$$
\begin{equation*}
\frac{i y_{y}}{f} \quad \frac{x^{\prime}}{x}\left(\frac{1}{2}-x\right) \tag{1}
\end{equation*}
$$

ict wrill beading $\frac{1}{R}=\frac{q^{2} y}{d x^{2}}$
$f i^{n}(1)$ beiceme $y I_{y} \frac{d^{2} y}{d x^{2}}=\frac{\omega}{2}\left(\frac{1}{2}-x\right)$

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{w}{2 y j_{z}}\left(\frac{1}{2}-x\right) \tag{2}
\end{equation*}
$$

integreating equation (2) wrat x

$$
\frac{d y}{d x}=\frac{w}{2 y I_{g}}\left[\frac{L x}{x}-\frac{x^{2}}{x}\right]+c_{1}
$$

slope is zero ie $\frac{d y}{d x}=0 \quad c_{1}=0$
then $\frac{d y}{d x}=\frac{w}{2 y I_{g}}\left[\frac{L x}{2}-\frac{x^{2}}{2}\right]$
Again. integrating eq 3 wht x weget

$$
y=\frac{w}{2 y I_{g}}\left[\frac{1 x^{2}}{4}-\frac{x^{3}}{6}\right]+c_{2}
$$

at $x=0 \quad y=0$

$$
c_{2}=0
$$

Then $y=\frac{\omega}{2 y I_{g}}\left[\frac{L x^{2}}{4}-\frac{x^{3}}{6}\right]$
depression profuced at $u=\frac{1}{2}$ is obtalned as

$$
\begin{aligned}
y & =\frac{\omega}{2 Y I_{g}}\left[\frac{1}{4}\left(\frac{1}{2}\right)^{2}-\frac{1}{6}\left(\frac{1}{2}\right)^{3}\right] \\
y & =\frac{\omega}{2 Y I_{g}}\left[\frac{t^{3}}{16}-\frac{t^{3}}{48}\right] \\
& =\frac{w}{2 Y I_{g}}\left[\frac{2 t^{3}}{48}\right] \\
y & =\frac{\omega L^{3}}{48 Y I_{g}}
\end{aligned}
$$

(5). Deam is supported at two ends.

Loared at it's centru:-
Let use beam AB of length L Supperted at its twe end $A B$ wi krife calge $\&$ cocd ω ploced at centre C. tet ω_{i} be the weigh of beam $\omega_{t}=u L$ (ω : weight/length).

ftotal Lear applied at $c=$ extereril teripl(w) + wight et beami (wi) $\left(w_{1}=w+w_{1}\right)$

- The receticn at ecteh krite cilgr ir wrotelimetien is $\frac{w+w_{1}}{2}$ - The becom is ecrmbinctien of A... irverted enotilevert Ar q Br at

 y weight $\omega\left(\frac{1}{2}-x\right)$ artirg at rivetrinct $\frac{1}{2}\left(\frac{1}{3}-x\right)$ at peint P.
- The tefal erterirel memertum of priet Q is sumef memeatua of $\frac{\omega+u}{2}$ atcut A of moment of $k\left(\frac{1}{2}-x\right)$ about G.

$$
\begin{align*}
& =\frac{u^{\prime}+w^{\prime}}{x}\left(\frac{1}{2} \cdot x\right)-w\left(\frac{1}{2}-x\right) \frac{1}{2}\left(\frac{1}{2}-x\right) \\
& =\frac{w^{\prime}+w}{2}\left[\frac{1}{2}-x\right]-\frac{w}{2}\left(\frac{1}{2}-x\right)^{2} \tag{1}
\end{align*}
$$

at cq^{m} conclition. $\frac{Y I_{g}}{R}=\frac{\omega+\omega_{i}}{2}\left[\frac{1}{2}-x\right]-\frac{w}{2}\left(\frac{1}{2}-x\right]^{2}$
but we know for soncul comcent bending $\left(\frac{d y}{d x}\right)^{2}$ is negligible

$$
\begin{align*}
& \therefore \frac{1}{R}=\frac{d^{2} y}{d x^{2}} \\
& E r(2) \Rightarrow Y I_{g} \frac{d^{2} y}{d x^{2}}=\frac{w+\omega}{2}\left[\frac{L}{2}-x\right]-\frac{w}{2}\left(\frac{L}{2}-x\right)^{2} \\
& \Rightarrow Y I_{g} \frac{d^{2} y}{d x^{2}}=\frac{\omega+\omega_{1}}{2}\left[\frac{L}{2}-x\right]-\frac{w}{2}\left[\frac{L^{2}}{4}+x^{2}-1 x\right] \tag{3}
\end{align*}
$$

Integracte eqn w.r.t x.

$$
\begin{equation*}
\Rightarrow y I_{-f} \frac{d y}{d x}=\frac{w+w_{1}}{2}\left[\frac{L x}{2}-\frac{x^{2}}{2}\right]-\frac{w^{2}}{2}\left[\frac{c^{2} x}{4}+\frac{x^{3}}{3}-\frac{L x^{2}}{2}\right]+c_{1} \tag{4}
\end{equation*}
$$

$$
\text { at } x-c, \frac{d y}{d x}=0
$$

$C_{1}=c$ of depression is obtained by infegrating eqn $a x=0$:

$$
\begin{aligned}
& \Rightarrow y g_{q} \Rightarrow \frac{\omega+w i}{2}\left[\frac{1 x^{2}}{4}-\frac{x^{3}}{6}\right]_{0}^{1 / 2}-\frac{\omega}{2}\left[\frac{i^{2} x^{2}}{8}+\frac{x^{4}}{12}-\frac{L x^{3}}{6}\right]_{0}^{1 / 2} \\
& \Rightarrow 21 I_{r} y=\left(v^{\prime}+w_{i}\right)\left[\frac{1}{4}\left(\frac{t}{2}\right)^{2}-\frac{1}{6}\left(\frac{1}{2}\right)^{3}\right]-\frac{\omega}{2}\left[\frac{t^{2}}{8}\left(\frac{1}{2}\right)^{2}+\frac{1}{12}\left(\frac{1}{2}\right)^{4}-\frac{1}{6}\left(\frac{1}{2}\right.\right. \\
& =\left(w+1 v_{1}\right) \frac{1^{3}}{24}-w_{L}\left(\frac{31^{2}}{192}\right)=\frac{c^{3}}{29}\left[\omega+w_{1}-\frac{3 w_{1}}{7}\right]
\end{aligned}
$$

$=\frac{t^{3}}{2}\left[x+\frac{5}{8} w i\right]$ - wher the wright of witc curunt then it s $9 / 9$ incuecierl by $\frac{5}{8}$ times.

Reynold Number is less than 2000, but for turbulent flow Reynolds No is above 3000. But when 2eynolds Number lies between $\mathbf{2 0 0 0}$ to $\mathbf{3 0 0 0}$, then the flow is unstable it may change from streamline o turbulent or vice versa.

Poisentis's fornala for flow of liquid through capillary tube :

Poissuille derived an expression for the rate of flow i.e. volume of liquid flowing per second through a narrow horizontal tube of uniform bore under a constant pressure difference between its ends. The assumption used are as follows :
() The flow of liquid s streamlined, parallel to the axis of tube.
(i) There is no Radial flow i.c., the pressure over any cross section is constant.
(iii) There is no acceleration of the liquid at any instant.
(iv) The liquid in contact with the walls of the tube is at Rest.

Figure shows a liquid flowing trough a narrow horizontal tube of radius r, length $/$ under a constant pressure difference ($(\mathbb{P}$) applied between its ends. The velocity of liquid in the tube is maximum along axis and is zero at the walls of the tube.

Let us consider a coaxial cylindrical shell of the liquid of radius x and thickness $d \mathrm{x}$. The liquid layer at distance x has velocity v and liquid layer at distance $\mathrm{x}+\mathrm{dx}$ from the axis has velocity v dv.

Hance force of viscosity on the cylindrical shell is given by Newtoris formula

$$
\begin{align*}
& F=-\eta A \frac{d v}{d x} \text { whare } \eta \text { is cocfficient of viscosity of liquid. } \\
& \Rightarrow F=-\eta(2 \pi d) \frac{d v}{d x} \tag{1}
\end{align*}
$$

$$
A=\text { Surface Area of the shell is } 2 x x d x .
$$

The negative sign means that force of viscosity acts opposite to driving force.
The force which tends to drive the liquid in the shell is (pressure difference across its ends
Area of cross section

$$
\begin{equation*}
\text { i.c., } F^{\prime}=P\left(\pi \kappa^{\lambda}\right) \tag{2}
\end{equation*}
$$

\therefore For Steady flow of liquid these two forces must balance each other. So $F=F$

$$
\begin{align*}
& \Rightarrow-\eta(2 \pi d) \frac{d v}{d x}=P\left(\pi x^{2}\right) \\
& \Rightarrow \frac{d v}{d x}=\frac{-P x}{2 \eta l} \\
& \Rightarrow d v=\frac{-P x d x}{2 \eta l} \tag{3}
\end{align*}
$$

Integrating equation (3) we get

$$
\begin{equation*}
\Rightarrow v=\frac{-p}{2 \eta \eta}\left(\frac{x^{2}}{2}\right)+C \tag{4}
\end{equation*}
$$

(where C is a constant of Intcgration)

But when $x=r$ (at the wall of the tube)

$$
\begin{equation*}
v=0 \text { (biquid is at Rest) } \tag{5}
\end{equation*}
$$

quation gives $0=\frac{-\mathrm{pr}^{2}}{4 \eta l}+\mathrm{C} \Rightarrow \mathrm{C}=\frac{\mathrm{pr}^{2}}{4 \eta l}$
Using equation (5) in equations (4) we get :

$$
v=\frac{P}{4 \eta \boldsymbol{I}}\left(r^{2}-x^{2}\right)
$$

Thas ropresents equation of parabola. So the profile of velocityCutr ribution of liquid is parabola as shown.

The length of Arrows are proportional to the velocities of brov repective positions. The velocity is maximum along the axis
$(x-0)$ and zero at the walls of the tube $(x-r)$.
Now the volume of the liquid flowing per second through the cylindrical shell of face : $2 \pi \mathrm{x}$ dx is given by

$$
\begin{aligned}
d V & =\text { (velocity) Face Area of shell } \\
& =(v)(2 \pi x d x) \\
\text { or } d V & =\frac{p}{4 \eta I}\left(r^{2}-x^{2}\right) 2 \pi x d x \\
\Rightarrow d V & =\frac{p}{2 \eta I}\left(r^{2}-x^{2}\right) \pi x d x
\end{aligned}
$$

Hence the volume of the liquid V flowing per second through the whole tube is obtaino tegrating the above expression between limits $\mathbf{x}=\mathbf{0}$ and $\mathbf{x}=\mathbf{r}$.

$$
\text { i.e., } \begin{aligned}
V & =\frac{\pi p}{2 \eta l} \int_{0}^{\prime}\left(r^{2}-x^{2}\right) x d x=\frac{\pi p}{2 \eta l}\left[r^{2} \frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{r} \\
\text { or } V & =\frac{\pi p}{2 \eta l}\left[\frac{r^{4}}{2}-\frac{r^{4}}{4}\right] \\
& \Rightarrow V=\frac{\pi p r^{4}}{8 \eta l}
\end{aligned}
$$

which is poiseuille's formula.

nitations and corrections :

In deriving poiseuille's formula two important aspects have been neglected. It was assu t pressure difference across two ends of pipe was used up against viscosity, but actually a his pressure difference is used up in imparting KE to the liquid. Secondly it was assumed uid flowing in the tube had no acceleration and is atreamline as it enters the trho But in fact id while entering the tube is accelerated.
(a) Kinetic Esergy correction : Lat P^{\prime} hr that ne........ . mm

$\mathrm{P} N+V^{\prime} \rho / \pi^{2} \mathbf{r}^{4}$

$$
\mathrm{PV}=\mathrm{P}^{\prime} \mathrm{V}+\mathrm{V}^{\prime} \mathrm{g} / \mathrm{m}^{2} \mathrm{r}^{4} \Rightarrow \mathrm{P}^{\prime}=\mathrm{P}-\mathrm{V}^{2} \mathrm{~g} / \mathrm{r}^{2} \mathrm{r}^{4}
$$

(b) Correction for Acceleration: The motion of liquid as it enters the tube is accelerated foer not hecome streamline until after covering a large distance
Sicerrot is eliminated if the effective length of the tube is taken to be ($/+1.64 \mathrm{r})$ where r is wo of tule.
So the consideration of Two corrections leads to modified form of poiseuille's formula as

$$
=\mathbf{V}=\frac{\pi\left(\mathbf{P}-\rho \mathrm{V}^{2} / \pi^{2} \mathbf{r}^{4}\right)}{8 \eta(1+1.64 \mathrm{r})}
$$

THACE TENSION

The property of a liquid by virtue of which the surface of a liquid behaves like a stretchec mirance and has the tendency of contracting is known as surface tension. As a result the ce of liquid can support henvier objects over it. For example a needle can be placed carefully ater surface so that it floats without sinking Some insects also walk over liquid surface witl depressions in the regionof contact. Due to the property of surface tension the hiqud surfac to contract i.e. it tends to make the minimum surface arca. But for a given volume, th face area of a sphere is minimum. It is for this reason that the shape of mercury drop or rai op or water drop are spherical (neglecting the effect of Gravity). The property of surface tensio liquid can be explained on the basis of molecular theory of matter.

If we imagine a line $\mathbf{A B}$ of length I in the free surface of a liquid at rest then the force face tension is defined as the foree acting per unit length on either side of the imaginary lin is force acts in a direct ${ }^{\text {i }}$. Nincular to the line and is tangential to the liquid surface.

So if F is the force acting on either side of the line AB of length l, then surface lam

$$
\mathrm{T}=\frac{\mathrm{F}}{\ell}
$$

In SI system surface tension (T) is expressed in newton/meter $\left(\mathbf{N m}^{-1}\right)$. In CGS sye expressed in dyne/cm. The dimensional formula of surface tension is [MLT ${ }^{2}$].

Waves
A wave is a type of disturbance which travels through a modium and is due to the tramfur tion from particle to particle of the medium. But there is no material transference of the The wavelength of waves formed on the surface of sea is very large and such sevasere
called gravity waves. In these types of waves the curvature of the surface is amall and gravity deminates over surface tension. So in this type of wave there is tratsverse vibrabon te. surface meves up and down in a periodic munnter. In adkition there is periodic horuzontal motice it a assumed that the drops of liquid near the surface describe circular path in anticlockwise direction in the vertical plane and waves propagate in the derection from lef to right in the form of crests and troughs.

If V is the velocity of the waves along the horinotal direction and a is udius of the circk and $T_{\text {s }}$ is the time period of motion of drop (it is also the time taken by the waves to cover distanet equal to wavelength λ), then if $V_{\text {, }}$ is the velocity of particle on crest A.

We have $\mathrm{V}_{\mathrm{i}}=\mathrm{V}-\frac{2 \mathrm{a} \mathrm{a}}{\mathrm{T}_{\mathrm{t}}}$
|as velocity = Angular velocity \times amplitude $=$ eun $=$ eas $=\frac{2 \pi a}{T_{0}}$ |
But at the through B, the velocity of the particke is given by

$$
\begin{equation*}
V_{t}=V+\frac{2 \pi a}{T_{s}} \tag{2}
\end{equation*}
$$

The pressure at the liquid surface is aqual to atmoepheric pressure everywhere i.e $P_{s}=P_{s}=P_{6} \quad$ (Atmospheric pressure)

Applying Bernoulli's theorem at A and B

$$
\begin{align*}
& P_{o}+\frac{1}{2} \rho V_{i}^{\prime}+\rho g^{h}=P_{o}+\frac{1}{2} \rho V_{i}^{\prime} \\
& \text { or } V_{i}^{\prime}+2 g h=V_{i}^{2} \tag{3}
\end{align*}
$$

Now usign the values of $\mathrm{V}_{\text {, }}$ and V_{2} form of (1) \& (2) in of (3) we get :

$$
\left(\mathrm{V}-\frac{2 \pi \mathrm{a}}{\mathrm{~T}_{\mathrm{o}}}\right)^{\mathrm{z}}+2 \mathrm{gh}=\left(\mathrm{V}+\frac{2 \pi \mathrm{a}}{\mathrm{~T}_{\mathrm{o}}}\right)^{2}
$$

$$
\begin{align*}
& \text { i.e }\left(V+\frac{2 \pi a}{T_{o}}\right)^{2}-\left(V-\frac{2 \pi a}{T_{o}}\right)^{2}=2 g h \\
& \text { i.e. }(4 V)\left(\frac{2 a \pi}{T_{o}}\right)=2 g h \text { i.e } \frac{4 \pi a V}{T_{o}}=g h \tag{4}
\end{align*}
$$

But $h=2 a, T_{o}=\lambda / v$
So eqn becomes

$$
\begin{equation*}
\frac{4 \pi a V}{\lambda / v}=(g)(2 a) \Rightarrow V^{2}=\frac{g \lambda}{2 \lambda} \text { or } V=\sqrt{\frac{g \lambda}{2 A}} \tag{5}
\end{equation*}
$$

Which is the expression for velocity of grevity waves.

of surface Tension on Gravity waves (Ripples)

The wavelength of waves formed on the surface of ponds and lakes is samill and such small waves are called ripples. In these types of waves surface Tension plays a very important role due $t 0$ the face that in case of a curved liquid surface there exists pressure difference doe to surface Tension is an excess pressure exists across the curved liquid surface directed from concave side to the convex side and is given by $P=T\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$ Where T is surface Tension of hiquid R_{1} \& R_{2} art
radiii of eurvatures.
The equation of simple harmonic wave traveling over a liquid is given by

$$
\begin{equation*}
y=r \sin \left(\frac{2 \pi x}{\lambda}+b\right) \tag{1}
\end{equation*}
$$

Where r is amplitude, λ is wavelength, y is displacement of a point along vertical or y axit is the abscissa of the point from some origin.
b is some constant.
Then $\frac{d y}{d x}=\frac{2 \pi x}{\lambda} \operatorname{Cos}\left(\frac{2 \pi x}{\lambda}+b\right)$

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}}=-\left(\frac{2 \pi r}{\lambda}\right)\left(\frac{2 \pi}{\lambda}\right) \sin \left(\frac{2 \pi x}{\lambda}+b\right) \\
\alpha_{i} \quad \frac{d^{2} y}{d x^{2}}=\frac{-4 \pi^{2} r}{\lambda^{2}} \sin \left(\frac{2 \pi x}{\lambda}+b\right) \tag{2}
\end{align*}
$$

As the wave surface is cylindrical one of the radii is infinite then
puthing $\mathbf{R}_{\mathbf{3}}-\boldsymbol{\sim} \quad \mathbf{R}_{1}=\mathbf{R}$
We get $P=T\left(\frac{1}{R}+\frac{1}{w}\right)$ or $P=\frac{T}{R}$
Bat $\frac{1}{R}=\frac{d^{\prime} y / d^{x}}{\left\{1+\binom{d y}{d}\right\}^{\prime}}$
of $\frac{1}{R}=\frac{d^{t} y}{d^{2}}$ as $\frac{d y}{d x}$ is mall in comparision io 1 .
At point A, ulape is ruro i.e $\frac{d y}{d x}=0 \Rightarrow \operatorname{Cos}\left(\frac{2 \pi x}{\lambda}+b\right)=0$
then $\sin \left(\frac{2 \pi x}{\lambda}+b\right)= \pm 1$
Using Maximum vaike of $\operatorname{Sin}\left(\frac{2 a z}{\lambda}+b\right)=+1 a \frac{d^{2} y}{d x^{2}}<0$ at A
$\Rightarrow \operatorname{gec} \frac{d^{2} y}{d x^{2}}=\frac{-4 x^{2} r}{2}$ er $\frac{1}{R}=\frac{-4 x^{2} r}{\lambda^{2}}$
 $-\frac{T}{R}=-T\left(\frac{-4 x^{2} r}{\lambda^{2}}\right)$ or $\frac{4 \pi^{2} r T}{\lambda^{2}}$. As a ramit the cacess force on an danest of ara din of thick
 where ρ is denaity of lipuid

As a renult the thotal dowamard force is

Frum the above diecusion is is foum that the effect of serfion" g to $\mathrm{g}+\frac{4 \pi^{2} \mathrm{~T}}{\mathrm{\rho}^{2}}$

Then as we know velocity of gravity waves is $V=\sqrt{\frac{g \lambda}{2 \pi}}$, In this discussion we get the
expression for velocity of waves controlled by gravity and surface Tension as $V=\sqrt{\frac{\lambda}{2 \pi}\left(g+\frac{4 \pi^{2} T}{\rho \lambda^{2}}\right)}$
(6)

So if λ is verysmall as in case of small or short waves known as Ripples, the second term in
(6) dominates over the first term
so that $V=\sqrt{\frac{\lambda}{2 \pi} \cdot \frac{4 \pi^{2} T}{\rho \lambda^{2}}}$ i.e $V=\sqrt{\frac{2 \pi T}{\rho \lambda}}$
Which is controlled by surface Tension.

